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Properties and eigenvalues of a fifth label generating 
operator for quadrupole-phonon states 

G Vanden Berghe and H E De Meyert 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 271-S9, 
B-9000 Gent, Belgium 

Received 7 September 1979 

Abstract. The properties of a previously algebraically derived fifth label generating 
operator S for quadrupole-phonon states are discussed. This algebraic operator is connec- 
ted with the operators following from pure group theoretical principles. A method is 
developed by which it is possible to calculate numerically the eigenvalues of the operator S .  

1. Introduction 

The wavefunctions of the quadrupole-phonon states, as introduced by Bohr (1952), can 
be exactly defined by using group theoretical (Arima and Iachello 1976, Chacon et a1 
1976, Kemmer et a1 1968, Von Bernus et a1 1975, Corrigan et a1 1976, Weber et a1 
1966, Williams and Pursey 1968) and pure algebraic techniques (Vanden Berghe and 
De Meyer 1979b). Five quantum numbers are needed to classify uniquely the states 
built up by N quadrupole phonon states. Four of them are related to the Casimir 
operators of the groups appearing in the chain U(5) 3 R(5) 3 R(3) 3 R(2), i.e. the boson 
number N, the seniority U, the angular momentum JN and its projection MN. The fifth 
label which one usually introduces counts the number of boson triplets coupled to zero 
angular momentum (Arima and Iachello 1976, Chacon et a1 1976) and is not related to 
the eigenvalue of an operator. On the contrary, it is known that there exists an integrity 
basis which gives all R(5) 3 R(3) labelling operators (Gaskell et  a1 1978), the number of 
which is stated by a general theorem (Peccia and Sharp 1976). To our knowledge, 
however, no attempts have been made to calculate eigenvalues and to determine an 
orthonormalised basis. 

Very recently a method has been developed by which it was possible to derive the 
most general form of operators which commute with the Casimir operators of the four 
mentioned groups and which are independent of them (De Meyer and Vanden Berghe 
1980). The eigenvalue of such an operator can then be used as a fifth label. These 
operators have been developed in terms of a set of scalar operators, also called 
canonical operators, in order to refer to the property that all the phonon creation 
operators 6: stand to the left of the phonon annihilation operators ( -  l)wb.-p, i.e. 

O~~:::~s;l;_l& = J2J+  l[((. . .(b+b')J2b+)J3 . . .)JN-lb')JN 

x ((. . .(bb)"b)'3 . . .)"-'b)J"]O ( N  3 2) 
0 = JJ(b+b)O ( N  = 1). 

t Aangesteld Navorser bij het National Fonds voor Wetenschappelijk Onderzoek. 
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It has been remarked that the set of operators (I .  1) is overcomplete, since for fixed M 
and JN values the operators having different intermediate angular momentum values 
are not necessarily independent. It has been shown (De Meyer and Vanden Berghe 
1980) that it is possible to indicate for any fixed N a n d  JN, insofar as an N-phonon state 
with angular momentum JN exists, a minimal set of independent operators 02 ,  k ,  in 
terms of which all other canonical operators can be expressed. The criterion for 
selecting this set of independent operators has been discussed in detail by Vanden 
Berghe and De Meyer (1979b). For further use we state here the expressions in 
canonical form of the number operator N and its square, the angular momentum 
operator J 2  and the Casimir operator of the R(5) group: 

N = O  

N 2 =  o+c 0; 
.I 

V"= -2o+;o;-;c 0; 11.5) 
J 

whereby the J summations extend over the even-integer values from 0 to 4. 
The conclusions that have been obtained (De Meyer and Vanden Berghe 1980) are 

the following. 
(a) Operators commuting with N, J 2 ,  V* and the angular projection operator Jo, 

and being independent of these four operators, should at least contain terms built up 
with four phonon creation and four annihilation operators. 

(b) They can be written in the following particular form: 

X[{f>l= f;:o;:: +f20:: +f;:o;: q;:o;: -tc:o:: +f::::O::: +f:;;o:;: 
t-fz:;o::; +f:;;o:;; +f;:;o;;; t-g;:o::: -t f;;:o::: +f:;:o:;: 

= x[ z5'- '"-240536 - 0 . 7 1 4 3 ~  x,  y ,  z, - - ( y  55 - 2) 

14 28 

-6.61476 - 1 . 9 6 4 3 ~ ;  e, g, -3a  +2.40536 

+ 0*7143c, U, a, kt, c, 6, b, - 2 . 0 9 5 2 ~  + 2.39266 

+0-0816c+0.8658d, d7 1.2768a -2.21806 -0.4559r+0.5804d , 

( x ,  y ,  z ,  a, 6, c, d, e, g, E RI. (1.7) 
I 

One should, however, notice that such operators are only determined upon terms of the 
form N 2 ,  J 2 ,  V" and N, with which they commute. 

(c)  Nine independent operators of the form (1.6) can be constructed out of the 
operators (1.3)-(1&5), i.e. N 3 ,  J 'N,  V*N, N4, J2hr2 ,  V*N2, J 4 ,  V*2, J2V* .  In table 1 
the values, which take the ten independent parameters x, y ,  z, a, b, c, d, e, g and Iz for 
each of these operators, are summarised. 
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(d) Any operator of the form (1.6) and (1.7), which is independent of the nine 
operators listed at the head of table 1, can be used as fifth label generating operator. The 
simplest one follows from the choice 

d = l  a = b = c = e = g = h = x = y = Z = O  

Weber et a1 (1966) have proposed some operators which could be used for the 
complete classification of the states considered. They are constructed in terms of the 
generators of the R(5) Lie algebra. In the first part of this paper a connection will be 
made between the operators (1.6)-( 1.7) and the ones proposed by Weber et a1 (1966). It 
will also be shown that the second Casimir operator of the R(5) group is not linearly 
independent of the nine operators listed in table 1 and therefore not useful for the 
classification of the phonon states under consideration. Very recently Hughes and 
Yadegar (1978) have developed a method by which R(3) scalar operators can be 
constructed for low-dimensional groups possessing an R(3) subgroup. We shall state 
the form of this operator obtained by applying that method to the R(5) group and show 
its relation to the operators of the form (1.6)-( 1.7) and to the ones proposed by Weber et 
a1 (1966). 

In the second part of this paper a method will be presented by which it is possible to 
calculate the eigenvalues of the operator S (equation 1.8). Therefore the quadrupole- 
phonon states constructed by Vanden Berghe and De Meyer (1979b) will be used. The 
proposed method will be applied to derive the eigenvalues of the N = 6 states with total 
angular momentum JN = 6, which are the first states degenerate with respect to the 
seniority. 

2. Previously proposed fifth label generating operators 

2.1. Operators proposed by Weber et a1 (1966) 

Weber et a1 (1966) have proposed that one of the three following operators could 
eventually be used for the classification of the quadrupole-phonon states: 

Sk = [ ( (b 'b)3(b 'b)3)2k((b+b)3(b+b)3)2k]0  k = 1,2,  3. (2.1) 
These operator forms belong to a larger class of operators which we will study here, i.e. 

Q( kl k 2  k3 k4 k5) = J2k,[(( b +b)  k 1  (b'b) k 2 )  k'( (b'b) k3( b'b) *) '1 k k O  

kl, k 2 ,  k3, k4 = 1 or 3. (2.2) 
Since these operators are all R(3) scalars, they commute with J 2  and JO. Moreover, as 
the forms ( b + b ) i  (k = 1 or 3) are the generators of the R(5) group, they all commute 
with its Casimir operator V". Due to the particular form of (2.2) the commutator 
[Q, NI is also zero. These Q operators fulfil the conditions, mentioned in the intro- 
duction, to be a fifth label generating operator. In this way it should be possible to 
transform (2.2) into the canonical form (1.6)-(1.7). This transformation is rather 
tedious and we have merely :tated the result in appendix 1. The 12j  symbols of the first 
and second kind and the 15j  symbol, appearing in that result, are defined according to 
Yutsis et a1 (1962). By introducing the different possible values for the set 
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(k17 k2, k3, k,, k,) into (Al .1)  it is now a matter of straightforward calculation to obtain 
the results for the ten independent parameters x ,  y ,  z, a, b, c,  d, e, g and h as defined by 
(1.6)-(1.7). These numbers are summarised in table 2 for the 14 different existing 
operators of the form (2.2). The parameters of the other Q operators, not mentioned in 
table 2, are, except for a phase factor, either equal to one of the 14 summarised results 
or can be brought in a simpler form consisting of scalar R(3) operators constructed in 
terms of two R(5) generators. The Q operators with k l  = k2, k3 = k, and k5 odd belong 
to the last-quoted kind. Indeed 

d m [ ( (  b +b)  k 1  (6 +b) k 1 ) 2  k s +  I ( (  b+b)&'( b +b)  k 3 ) 2  k 5 + 1 ] ( 0 )  

The commutators in (2.3) are derived by Weber et a1 (1966) to be 

= 2(2kl+ 1) 2 ( -  1)MJ4L + 3 
L,M 

(2.4) 

Introducing (2.4) into (2.3) and performing the Racah algebra, one gets 

k l  k l  2k5+1  k3 k3 2 k 5 + l  
=d4k5+3{ 2 1 r 2  2 2 

showing that operators of this kind can all be expressed in terms of N, J 2 ,  N 2  and V". 
Not all of the 14Q operators given in table 2 are linearly independent of the Casimir 

operators of the U(5), R(5) and R(3) groups. Indeed it is easy to show analytically that 

Q(11110)= 1/300J4 

Q(33330) = 1/7( V* + 1/10J2)2 

Q(33110)= - 1 / ( 1 0 d ~ ) J 2 ( V * +  1/10J2). 

Besides these three relations which can be simply understood, there exists one more. 
This supplementary one has been derived very recently (Vanden Berghe and De Meyer 
1979a), i.e. 

Q(l1112) = 1/300($J4-$J2). (2.9) 

We remark here that these four relations can be numerically checked by using tables 1 
and 2. 
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m r - 0 0 v i d b W m N m m r - 0  m a O O v i " m m w m m a 0  
r - b b N N P O m r - - a . - a d  
m r - N m b O b 0 W - N b - m  
3 0 0 0 0 + 0 0 0 ~ 0 0 3 3  
~ 0 0 0 0 0 0 0 0 0 0 0 0 0  
I t  i I 

5 0 0 0 ~ 0 0 0 0 0 0 0 0 0  
I I 1  

2 c4 0 N d c- 0 N c4 d N N c? d 

1 3  (c1 m m m 13 3 n 3 3 3 3 3 

* .- m m m m n - CCI m m m m m 

..I - 0 m m m m m c, m - ..- r( 3 

..I + m m m m m m m m i m m m 
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With the results obtained, the behaviour of the R(5) Casimir operator of order 4 can 
be investigated. Following Weber et a1 (1966) it can be defined as follows: 

~ ~ = 2 ~  c ( b + b ) 2 ]  (b’b) 22(b+b) >3(b+b) k4 
k I k2 k3k4 m I m2m7m4 
LiLzL3L4 A I A z A ~ A ~  

( - l ) A l + h 2 + h 3 c A 4  (2L1 + 1)(2L2+ l)(2L3+ 1)(2L4+ 1) 

x[(2k1+ 1)(2k2+ 1)(2k3+ 1)(2k4 f l)]’” 

L1 L)( -k;2 L2 L3)( k3 
L3 L4) 

- m l  - A l  - A 2  A 3  -m3 - A 3  A 4  

-m4 - A 4  A l  
(2.10) 

Note that the ki and Li ( i  = I ,  2 ,3 ,4)  summation indices can only take the values 1 and 
3. This biquadratic invariant can be transformed with the help of Racah algebra: 

V1 = 24 ( - l ) k 5 Q ( k l k 2 k 3 k 4 k s ) ( 2 L l +  1)(2L2+ l)(2L3+ l)(2L4+ 1) 
k i k z k 7 k 4 k ~  
L I LZL3L4 

x[(2k1+ 1)(2k2+ 1)(2k3+ 1)(2k4+ 1)]1’2 

(2.1.1) 

Introducing the canonical form of the Q operators (see appendix 1) and performing 
numerically the various summations, V1 can be written as follows: 

VI= -0*340910;:: -0.294340;;: +0*991210f:: + 1*050f:2 +6*428550:f: 
024 - - 2.386280::: - 2*412570024 12,85671 0:: +6*30:: 

+ 8.591550:: - 7 * 5 0 : +  13*12S(Of+ 0:)+7*5N. (2.12) 

Comparing this expression with the canonical expansion of V*’ (see table 1) it is 
straightforward to deduce, within the accuracy of our numerical calculations, that: 

v, =;v*z-;v* (2.13) 

showing that the quadratic and quartic Casimir operators are not independent. This 
result is obvious since we are dealing with symmetric representations of R(5), which 
need just one representation !abel. On the other hand, the explicit relationship 
between V1 and V* has also been obtained by a completely different method by 
Nwachuku and Rashid (1977) in their study of the eigenvalues of the Casimir operators 
of the orthogonal and symplectic groups for the special case of a completely symmetric 
representation. 
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2.2. The operator suggested by Hughes and Yadegar (1978) 

Very recently Hughes and Yadegar (1978) have developed a general method by which 
R(3) shift and scalar operators can be constructed for low-dimensional groups possess- 
ing an R(3) subgroup. Hughes has shown that these operators, which he denotes as Of, 
are useful to solve the eventual state labelling problems. This method can also be 
applied to the R(5) group. Although the construction of all Of is outside the scope of 
the present work, it is very interesting to discuss the properties of the occurring scalar 
operator ofzo. 

This scalar operator for the R(5) case is defined as follows (Hughes and Yadegar 
1978) 

3 
(2.14) 0 Of=" =  YO(^ m)Qo+ 2 [ Y L ( L  m)Q+, - ~ ~ ( 1 ,  - m)Q-,I 

*=1 

where for p = 0, 1, 2, 3 

') (2.15) !)2(21 + 4)! (1 - m - p ) !  (1+ m ) !  1 
$(i, m )  = (-I)~+~!-"[ (3 6! (21 - 3)! (1 - m ) !  ( I +  m + p ) !  - p - m  m 

and 
Q,, = T(3, T p)(JJ for p 2 0. (2.16) 

In (2.16) J, are, together with Jo,  the generators of the R(3) subgroup of R(5). They 
are defined in terms of the (b'b); introduced in (2.1) and (2.2) in the following way: 

Jo = d=(b+b)A J ,  = +2JS(b+b):,. (2.17) 

The T(3, p )  ( p  = - 3, - 2, . . . , + 3) represent the seven-dimensional tensor represen- 
tation of the other generators of R(5). They can be written in the following form: 

(2.18) T(3 ,  p )  = ( b + b ) z =  4,. 
The generators (2.17) and (2.18) satisfy the commutation relations 

[Jo, J*1= J* 
[J,, J-I = 2Jo 

CJO, 4,l = Pq, 

[J*, qpl = [(3 r p H 3  f p + W2q,** .  
(2.19) 

Introducing (2.17) and (2.18) into (2.14) and replacing the combination 1(1+ 1) by J 2  
and m by Jo,  it is easy to verify that 

+q-3J: +J3/5q+lJ-[J2-5Jo(Jo- 1)-2]+&q+2J? (Jo- l)-q+,J?. 

(2.20) 

Since 0; is a scalar operator, containing terms built up with four creation and 
annihilation operators, and since it commutes with the Casimir operators of the groups 
belonging to the chain U(5), R(5), R(3) and R(2), one can expect that it can be brought 
in the form (1.6). A straightforward calculation shows that 

0; = - 4 0 J 7  Q( 113 12) (2.21) 

with Q defined by (2.2). By this relation and with the help of table 2 the reader can 
easily calculate the values of the parameters occurring in (1.7). Moreover, Hughes' 
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method provides an algorithm for deriving analytically the eigenvalues of operators of 
the form 07, thereby, since this operator is Hermitian, giving an orthogonal solution to 
the state labelling problem. We are currently investigating this way of working and 
hope to report on it in the near future. 

3. Calculation of the eigenvalues of the operator S 

Since the operator S (equation 1.8) is expressed in a second quantisation form it should 
be preferable to have the quadrupole-phonon wavefunctions available in terms of a 
coupling between phonon creation operators. Recently Vanden Berghe and De Meyer 
(1979b) have presented such a construction scheme. A wavefunction specified by the 
phonon number N, the seniority v,  the number of zero coupled triplets p, a total angular 
momentum JN and its projection MN can be denoted as follows: 

where the summation extends over the linear independent basis vectors and where the 
acU,p,JN are the weights tabulated by Vanden Berghe and De Meyer (1979b). The state 
vectors I{Ji}) have the formal structure 

with J1 = 2 since the choice Jo = 0 has been made for reasons of symmetry. We remark 
that, because of notational convenience, the MN quantum number has not been 
denoted. The wavefunctions (3.1) are orthonormalised and the eventual seniority 
degeneracy is solved by the quantum number p, however, not related to the eigenvalue 
of an operator. 

Applying S to a general state (3.1) is very laborious. Since the eigenvalues of S are 
independent of MN no great loss of generality and a good deal of simplification results 
from considering states of maximum projection MN = JN. By doing this one can make 
use of the property that each of the basis vectors can be expressed in terms of products 
of elementary permissible diagrams (EPD) as introduced by Chacon et a1 (1976). 
Moreover, since [ S ,  V*]  = 0 it follows that seniority non-degenerate states of the type 
(3.1) are also eigenstates of S.  If, however, two seniority degenerate states of the form 
(3.1), i.e. IN, U, pl, JN,  M N )  and IN, U, p2, JN, M N )  occur, it follows from the condition 
[ S ,  V*] = 0 that one can expect that SIN, v, pi, JN, M N )  ( i  = 1 or 2) should be a linear 
combination of both states. 

Let us consider now as an example the N = 6 states with JN = 6 and MN = 6. There 
exist three such states, one v = 4 and two v = 6 states. They are written down as follows 
in the form (3.1) (Vanden Berghe and De Meyer 197913) 

IN=6 ,  ~ = 4 , p = O ,  JN=6,M~=6)=0.1497910,2,0,2,2,4,6)~~=6 (3.3) 
IN = 6, v = 6, p = 1, JN = 6, MN = 6) 

= -0.0776810, 2 ,0 ,2 ,2 ,4 ,  6)~,,6+0*1122010, 2, 2, 0, 2 ,4 ,  6)~,.,=6 (3.4) 

IN = 6, v = 6, p = 0, JN = 6, MN = 6) 

=0*02377)0, 2, 0, 2, 2,4,6)~,,6-0'0114710, 2, 2, 0, 2, 4, 6 ) ~ ~ = 6  

+0*08692(0, 2, 2, 3, 4, 5 ,  6 ) ~ ~ = 6 .  (3.5) 
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It is easy to show that the following relations yield between the occurring basis vectors 
and the combinations of the existing EPD (Chacon et a1 1976) 

1 
=(2, 0)(1, 2)*(2, 2) = 10, 2, 0, 2, 2, 4, 6)M~=6 
435 

=(3, @(I,  213 = (0, 2,2, 0, 2 , 4 , 6 ) ~ ~ = 6  
435 

(3.6) 

(3.7) 
1 

X 10,2, Ji, J z ,  J3, J4, 6),wN=6 
= 1.1499710, 2,0,2,  2,4, 6)MN,6-0*5110910, 2, 2, 0, 2,4, 6 ) ~ ~ = 6  

+ 1.1338810,2,2,3,4,5, 6)MN=6. (3.8) 

In order to obtain the result (3.8) we have made use of the fact that all 
10,2, J1, Jz ,  J3,  J4, 6) states can be developed in terms of the three chosen basis vectors 
(Vanden Berghe and De Meyer 1979b). Due to the relations (3.6)-(3.8) the three 
N = 6 states (3.3)-(3.5) can be expressed in terms of the considered EPD. It is now a 
matter of straightforward application of Racah algebra to derive the results for 
S(2,0)(1,2)’(2,2), S(3,0)(1, 2)3 and S(2, 2)3. As an example we present in appendix 2 
the result of the application of an operator of the form O;$& on (2, 2)3. By using this 
expression and the other analogous ones, each of the present kets has to be developed in 
terms of the basis vectors. Since such operations necessarily require the knowledge of 
all existing relationships between the state vectors I{J,}), and therefore are quite 
involved, we have invoked computer assistance for numerical treatment. The numeri- 
cal results are summarised in table 3. These results can now be used for the application 
of S on the N = 6 states (3.3)-(3.6). The following results are then obtained: 

S16,4,0,6,6) = 50*6502(6,4,0,6,6) 

S16,6, 1,6,6) 
= -6*1049]0,2,0,2,2,4,6)+8*8588(0,2,2,0,2,4,6) 

+0*1552(0,2,2,3,4,5,6) 

=79.137916,6, 1 ,6 ,6)+  1.7851(6,6,0,6,6) 

S(6, 6,0,6,6) 
= 1*0571~0,2,0.2,2,4,6)-0~3767(0,2,2,0,2,4,6) 

+4*373010,2,2,3,4,5,6) 

= 1*785816,6, 1,6,6)+50.3111(6,6,0,6,6). 

These results clearly indicate that the wavefunction of the first considered 6+ state, 
which is not degenerate with respect to seniority, is indeed an eigenvector of the S 
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Table 3. The numeri@ results of the operaticn of the operator S(1.8) on (l/J%) 
(2,0)(1,2)*(2,2), (1/J35)(3,0)(1, 2)3 and (1/7J7)(2, a3. 

15.53 

State 

=(2, 0)(1, 2 m ,  2) 0::; 29.2673 6.1091 4.4255 
J35 0.86580::: 8.1040 -8.1040 -2.1074 

048040:2: 13.2'789 1.9949 -2.3183 

1 

~ ~ 

Total 50,6502 0~0000 -0.0002 

1 
1=(3,0)(1,2)3 0::: 17.3920 24.2181 -2,2128 
435 0.86580:;; -40.2080 40.2080 3.1610 

0.580404,:: 3.4716 14.5297 0.4347 

Total -19,3444 78.9558 1.3829 

1 
-+2, 213 0::: 46,5962 -- 16.7269 28.2734 
747 0.86580::: 16.7269 -16.7269 28.2735 

0.5804 0::; 0.0 0.0 0.0 

Total 63,3231 -33.4538 56.5469 

operator. We remark, however, that in the intermediate results (table 3) contributions 
to all basis vectors are obtained. The wavefunctions of the other 6' states, which are 
degenerate with respect to seniority, are no eigenvectors of the S operator. Due to the 
fact that S is a Hermitian operator. one expects that 

(6,6,0,6,6/S16,6, 1 ,6 ,6)  = (6 ,6,  1,6,6IS16,6,0,6,6) 

a condition, which within the accuracy of our numerical calculations, is fulfilled. 
It is now a matter of straightforward calculation to determine the N = 6, JN = 6' 

orthoriormalised wavefunctions which are simultaneously eigenstates of N, J 2 ,  .To, V" 
and S.  One finds: 

/6:)= 0.1498/0,2,0,2,2,4,6)  (3.9) 

)6:)=0*998116,6, 1,6,6)+0.0616/6,6,0,6,6) 

= -0~0761 /0 ,2 ,0 ,2 ,2 ,4 ,6 )+0~1133~0 ,2 ,2 ,0 ,2 ,4 ,6 )  

+0 .0054/0 ,2 ,2 ,3 ,4 ,5 ,6)  (3.10) 

16:)~ ---0.061616,6, 1,6,6)+0.9981(6,6,0,6,6) 

=0*028510,2,0,2, 2 ,4 ,6) -0 .0184/0 ,2 ,2 ,0 ,2 ,4 ,6)  

+0*086810,2,2,3,4, 5,6). (3.111 

The eigenvalues of S associated with these states are, respectively, 50.6502, 79.2477 
and 50.2009. This kind of calculation can be performed for each senioxity degenerate 
state. Although the numerical manipulations are quite involved the obtained eigen- 
values clearly distinguish the several states. 
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4. Conclusions 

In the first part of this paper the properties of a fifth label generating operator for 
quadrupole phonon states have been reviewed. It has been shown that the R(3) scalar 
operators of biquadratic form in the R(5) generators as proposed by Weber et a1 (1966) 
can fulfil these specific properties. Moreover, it has been proved that there are only ten 
such biquadratic forms, which are linearly independent of the U(5), R(5), R(3) and R(2) 
Casimir operators. A link was made between the operators constructed with the help of 
pure algebraical methods and the operators following from pure group theoretical 
principles. At the same time it has been confirmed that the R(5) Casimir operator of 
order 4 can be completely expressed in terms of the second-order R(5) Casimir 
operator. We also have shown that the R(3) scalar operator, constructed by using a 
method recently proposed by Hughes and Yadegar (1978), was equal, except for an 
overall numerical factor to one of the biquadratic forms just mentioned. 

In the second part an algorithm is given for the calculation of the eigenvalues of the 
Hermitian operator S introduced by De Meyer and Vanden Berghe (1980). This 
method is worked out in detail for the N = 6 states with angular momentum 6. It is 
shown that the eigenvalues obtained clearly distinguish the three I" = 6+ states. 
Unfortunately we were not able to interpret the physical content of such eigenvalue. 
Since, however, an infinity of such fifth label generating operators exists, it is quite 
difficult to believe that an operator S selected at random should be related to a physical 
property. 

Appendix 1. The operator Q(klkZk3k4k5) in canonical form 

Q( k l  k2k3k4kS) 
= (2 ks + 1 ) 

=[(2kl+  1)(2k2+ 1)(2k3+ 1)(2k4+ 1)]1'2(2k5+1) 

b -'b) k 1  (b'b) k ~ )  ks( (b+b)  k 3 ( ( b + b )  k 4 ) k s ] ( 0 )  

I 

+ [(2J2+ 1)(2J3+ 1)]'"0;$ 
1 2  J . 3  11 
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k5 k3 k4 

{ k l  k2 k5}{  2 J2 J3 J4 “ } [  2 2 2 2 5 3  J 2 ]  

kl k2 k5 

( k 3  k4 k’)[ 2 J2 J3 J4 k 5 ] [  2 2 J 2 }  
+ ( - 1 ) J 3 + J 4  

2 2 J3 

Appendix 2. The result for 0”,::;(2, 2)3 

oJ,J213(2r 213 
J 1 J 2 J 3  7 J 7  

= 7 2 0 6 ~ ~ , 2  [ (2J+ 1)(2J2+ 1)(2J3+ 1)]1’2(-1)f  
I 

+ 1 5 4 0 J 5 c  [ ( 2 J +  1)(2J1+ 1)(2J2+ 1)(2J3+l)]”2(-1)J’+J2 
J 
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+1540& 1 [(2J1+1)(2J2+1)(2J3+1)(2J-t l)]'" 
J J  

+ 7 2 0 & c  [ ( 2 J +  1) (2J1+ 1 ) ( 2 J z +  l ) ( 2 J 3 +  l)]'" 
J 
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